EUROTHERM
DRIVES

Servo Application Manual

Cut To Length

Prepared by: Phil Suffolk
Date: 16™ Nov 1999

Distribution List: EDL Service Engineers

© Copyright Eurotherm Drives Limited 1999

All rights strictly reserved. No part of this document may be stored in a retrieval system,
not employed by a Eurotherm group company without written permission from Eurother
Although every effort has been taken 1o ensure the accuracy of this decument it may be necessary, without notice, to make amendments or
correct omissions. Eurotherm Drives cannot accept responsibility for damage, injury, or expenses resulting therefrom.

or transmitted in any form or by any means to persons
m Drives Lid.

SERVO APPLICATION MANUAL -
CUT TO LENGTH

Contents
1.0 MAChing OVEIrVIEW ...cciviireiiiieee ettt 3
1.1 Maching LimGHONS oviieiieciiieie e errecsceseneerressseesssenes s e s s e s s anet e s s sannenso e 3
2.0 Control Wiring OVEIVIEW......ccieeeiiiereererirteeeeeeee e e seeeitte e sibane s eranees 4
3.0 Control Philosophyccovecuiiieie ittt e 4
4.0 Example BIAS Programeeeeeeeeeiieeieeeeneeeeiiircerecoeereteeeeeeeensesessossssssnsaseas 5
4.1 Completing Example Program ... eeerrcrneeeeiceenressccieee s ncenee s sane s 7
Appendix A : Synchron Commandscccveereiieiiiiiiiiiiciceeenrer e 8
A.1 Synchronadjust 1, Mode=n , Offset = [Variable X}, StartOffset [Variable X] 8
A.2 Synchronadjust 2, Linear = x ,Mode =y, Val. = z.eccvvroeiniei i 8
ASIFSIatus X = Y Hhen JUMP .on ittt eee s s ssn e e 9
10

Appendix B : Sample Solution..........uviiiveiiiieiiiniiiiecie

1.0 Machine Overview

Fig 1.0 illustrates the typical arrangement of a cut to length machine.

Fig 1.0 — Standard cut to length configuration.

The haul-off will provide a line encoder signal either directly or from the emulated
encoder output. The number of pulses would be proportional to the length of the material
passed. On detecting the correct number of pulses the cutter ramps to synchronous speed,
provides a digital output to activate the blade and then ramps down. On completion of
the cycle the cutter is returned to it's home position.

Some form of material handler is usually included to remove the processed material from
the process. A signal from the haul-off may provide a suitable ‘eject’ signal.

1.1 Machine Limitations
Machine cut tolerance will be a combination of two main factors.

» Accuracy of line encoder. Material contact problems or mechanical imperfections may
both lead to an encoder count that is not proportional to exact material length.

e Servos scan error. The servo scans for target encoder counts every 2msec. The length
of material, which passes through the haul off in this time frame, generates a cut
error.

¢ Cut quality. Movement in the blade mechanics will generate cut length inaccuracies.

The minimum machine cycle time provides the lower limit for the cut length. Machine
inertia dictates the rate at which the cutter can travel through its synchronous move phase
and then return to home. The forque rating of the motor should be calculated with this in

mind.

Report Description Page 3 of 10

2.0 Control Wiring Overview

Fig 2.0 illustrates a typical wiring arrangement for implementing a cut to length system
using a 631. The line encoder would be connected to the drive's X40 socket and is not

illustrated.
631 ov
i N/ ¥O Functions
—?:— = J! f gecording to
set-up with
FASYRIDER
5
[
¥O supply
to be instatied by User
. % DC +24¥
L1 O— 7 ®
. v
N O— 7= : »

SELY Isolation

Run

Cu
Enable
Home

Fig 2.0 — Suggested control wiring

3.0 Control Philosophy

Operating the ‘enable’ input will activate the drive and start the BIAS program. The drive
will move the cutter until it detects the home’ input. Once at home the resolver and
reference counts are reset.

The drive waits for a ‘run’ signal and then performs it's first cut cycle. The reference
encoder count is then monitored and the cut cycle triggered after the perquisite number of
counts have been detected.

The cut cycle is repeated until the ‘run’ or ‘enable’ signal has been removed.

Report Description Page 4 of 10

4.0 Example BIAS Program

Fig 3.0 lists a typical BIAS program for achieving the cut cycle for the cut to length

application. ;
PROG_START:
0 act. posit. 1 = 0 INKR
1 act. posit. 2 = 0 INKR
2 [variable 0] = 0
3 [variable 1] = 0
4 acceleration = 50000 rpm/s
5 deceleration = 50000 zrpm/s
6 gear factor =1 3
7 synch.adjustment; linear= 1 ,mode = 0 , val.= 1

8 synchr.settings;mode =130 offset=[var.1]; startoffset=[var.l]

9 [variable 0] = 100000

START_NEXT:

10 position = 16384 INKR

11 start axis

12 move synchron

13 position = 32768 INKR

14 update parameter ,
WAIT1: :

15 If status 2 == 0 then jump WAIT1

16 output 20 =1

17 position = 16384 INKR

18 update parametexr

19 synchr.settings;mode =1 ; offset=[var.1]; startoffset=[var.1]

WAIT2: J
20 If status 2 == 0 then jump WAIT2 !
21 output 20 = 0 |
WAIT3:

22 If status 2 == 0 then jump WAIT3

23 walt time 100 ms

24 start axis

25 move position; v = 3000 zrpm, s= 0 INKR

26 wait for position reached

WAIT_MASTR:

27 If actual pos. 2 < [variable 0] then jump WAIT MASTR

28 synchr.settings;mode =130 offset=[var.l]; startoffset=[var.0]

29 [variable 0] = [variable 0] + 100000

30 jump START_NEXT

Fig 4.0 — Example BIAS code for cut cycle only

The principle settings are programmed using the ‘synchr.settings...” commands. A |
summary of the parameters can be found in Appendix A. ’

Fig 4.1 illustrates the operation of the above code as a function of time. |

Report Description Page 5 of 10

v }

Line -
Encoder Time

Servo -
Magtor Time

Qutput 1 _
X10.20
) Time
i
Status 2
)) Time
TO TI1 T2 T3 T4

TIMING POINTS

Fig 4.1 — Process Cycle Timing Information

The relationship between line reference count and resolver counts at the timing points
indicated in fig 4.1 are given in the table, fig 4.2.

act.posit.1
1 act.posit.2 = 0
T1 16384 8192 10 position = 16384
T2 49152 40960 |13 position = 32768
T3 65536 49152 17 position = 16384
T4 100000 0 29 [variable 0]=[variable 0] + 100000

Fig 4.2 — Relative Distances Between Line Encoder and Resolver Count

Report Description Page 6 of 10

4.1 Completing Example Program

To achieve the home function the BIAS command ‘move datum Mode X’ can be utilised
prior to the above code. Implementing the ‘run’ functionality simply requires monitoring of
input 7.

Scaling can be used such that ‘real-world’ units can be implemented. These units are
defined when completing the BIAS definition for the X40 input

A complete list of one potential solution appears in Appendix B.

Report Description Page 7 of 10

Appendix A : Synchron Commands

A.1 Synchronadijust 1, Mode=n , Offset = [Variable X], StartOffset [Variable X]

e

0 Normal synchron move

1 Ramp down in half Masterstroke!" counts with a Startoffset®?
2 Ramp up in half Masterstroke!” counts with a Startoffset?

3 Reserved — special function

Mode + 32 Offset phase shift value will be loaded immediately, not on format trigger

Mode + 64 | Offset phase shift value will be loaded as offset on Masteraxis®

Mode + 128 | Slaveaxis™) sychronous speed start position in ‘Startoffset’ parameter

Phase shift value on Slaveaxis® or on the Masteraxis® (Mode-+64). The phase
shift is an absolute value

Phase shift between the master encoder and the ramp up / down function. If
| the Mode+128 is selected the resolver count is used.

(1) = ‘Masterstroke’ The line encoder distance set by ‘position = X’ when during
ramping phases of cycle.

(2) - ‘Startoffset’ Phase shift between line encoder and resolver required on
detecting format trigger (status 2<>0) and starting ramp up / down function.

(3) = ‘Masteraxis’ The master axis is deemed to be the axis generating the line
encoder signal. ‘
(4) - 'Slaveaxis’ The slave axis is deemed to be the axis being controlled by the

servo controller. The slave count is that of the resolver.

A.2 Synchronadijust 2, Linear = x , Mode =y, Val. = z

0 Actual position 1 will be reset to zero after every format®

1 Actual position 1 will not be reset after every format®

(5) = ‘Format’ Format is a generic term referring to the synchronous move cycle
including the ramp up, the synchronous move and the ramp down operations.

Report Description Page 8 of 10

0 to 500 Offset speed adjustment for phase shift on slave axis as
a percentage of the actual synchronous speed
Oto... Offset speed adjustment for phase shift on slave axis in
increments per sampling cycle
0 Bi-directional operation possible
1 Bi-directional operation not possible
0 Rampfilter will effect the total position setpoint
Rampfilter will affect on the offsetadjustment on slave
axis in synchronous mode.
0 to 500 Offset speed adjustment for phase shift on master axis
as a percentage of the actual synchronous speed
Oto... Offset speed adjustment for phase shift on master axis in
increments per sampling cycle
0 Positive synchronous start direction

Negative synchronous start direction

0 Position not reached
1 Position reached
1 0 Drive active
1 Drive not active
2 0 Trigger format not reached
1 Trigger format reached, set for 2msec
3 0 Trigger coupling not reached
1 Trigger coupling reached, set for 2msec
4 0 Synchronous offset adjust running
1 Synchronous offset adjustment reached
5 0] Profile executed, new profile number can be used
1 Profile start frigger, set fo 2msec
6 0 Last registration OK (mode 1, 3, 4, 5, 6 and 7)
1 Error in last registration cycle (mede 1, 3, 4, 5, 6 and 7)
10 0 Movement in progress
1 Ready for movement
1 0 No braking ramp
1 Braking ramp in progress

Report Description

Page 9 of 10

Appendix B : Sample Solution

The following BIAS program could act as a suitable solution to the application as

described.
PROG_START:
0 acceleration = 500 rpm/s
1 deceleration = 10000 xrpm/s
2 speed = 100 rpm
3 start axis
4 move datum; mode = 8
WAIT_START:
5 If input 9 == 0 then jump WAIT_START
6 act. posit. 1 = 0 INKR
7 act. posit. 2 = 0 INKR
8 [variable 0] = 0
9 [variable 1] = 0
10 acceleration = 50000 rpm/s
11 deceleration = 50000 rpm/s
12 gear “factor =1
13 synch.adjustment; linear= 1 ,mode = 0 , val.= 1
14 synchr.settings;mode =130 offset=[var.1]; startoffset=[var.1]
15 [variable 0] = 100000
START_NEXT:
16 position = 16384 INKR
17 start axis
18 move synchron
19 position = 32768 INKR
20 update parameter
WAIT1:
21 If status 2 == 0 then jump WAIT1
22 output 20 =1
23 position = 16384 INKR
24 update parameter
25 synchr.settings;mode =1 ; offset=[var.l]; startoffset=[var.l]
WAIT2:
26 If status 2 == 0 then jump WAIT2
27 output 20 = 0
WAIT3:
28 If status 2 == 0 then jump WAIT3
29 wait time 100 ms
30 start axis
31 move position; v = 3000 rpm, s= 0 INKR
32 wait for position reached
WAIT_MASTR:
33 If actual pos. 2 < [variable 0] then jump WAIT_MASTR
34 synchr.gsettings;mode =130 offset=[var.1]; startoffset=[var.0]
35 [variable 0] = [variable 0] + 100000
36 If input 7 == 1 then jump START_NEXT
37 stop axis; mode = 1
WAIT2MOVE:
38 If dinput 7 == 0 then jump WAIT2MOVE

39 jump PROG_START

Report Description Page 10 of 10

